Исследуя значимость и ДИ весовых коэффициентов логистической регрессии, построенной на основе медицинских данных, наткнулся на одну не совсем понятную формулу (Hosmer & Lemeshow, p. 35). Итак, Хосмер определяет стандартную ошибку (SE) как (формула 2.5)
SE(Bi) = Sqr (Var(Bi)),
где Bi - оценки коэффициентов,
Var(Bi) - дисперсии коэффициентов Bi,
Sqr - квадратный корень.
Но ведь стандартная ошибка определяется не так. Так определяется стандартное отклонение (SD). Может кто-нибудь пояснить, прав ли Хосмер?