p2004r, я пробовала работать с тремя этими пакетами, но или у меня руки кривые безнадежно

, или ансамбливое обучение тут не помощник.
library("ensembleR")
acc1=read.xlsx("C:/Users/Admin/Desktop/buyning.xlsx")
index <- sample(1:nrow(acc1),round(0.75*nrow(acc1)))
train <- acc1[index,]
test <- acc1[-index,]
preds <- ensemble(train,test,'id',c('treebag','rpart'),'rpart')
Error in train.default(training[, predictors], training[, outcomeName], :
Stopping
Something is wrong; all the RMSE metric values are missing:
RMSE Rsquared
Min. : NA Min. : NA
1st Qu.: NA 1st Qu.: NA
Median : NA Median : NA
Mean :NaN Mean :NaN
3rd Qu.: NA 3rd Qu.: NA
Max. : NA Max. : NA
NA's :1 NA's :1
======
library("caretEnsemble")
models <- caretList(train,test, methodList=c("glm", "lm"))
Error: nrow(x) == n is not TRUE
In addition: Warning messages:
1: In trControlCheck(x = trControl, y = target) :
trControl$savePredictions not 'all' or 'final'. Setting to 'final' so we can ensemble the models
==============
library("classyfire")
acco=read.xlsx("C:/Users/admin/Desktop/buyning.xlsx")
iClass <- acco[,1]
idata <- acco[,-1]
ens <- cfBuild(inputData = idata, inputClass = iClass, bootNum = 100,
ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")
а тут такая ошибка
Error in .initCheck(inputData, inputClass, bootNum, ensNum, parallel, :
Argument "inputData" must contain numeric values.
Шах и мат.
На что он жалуется то?